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ABSTRACT
Emerging Industrial Internet-of-Things systems require wireless so-

lutions to connect sensors, actuators, and controllers as part of high

data rate feedback-control loops over real-time flows. A key chal-

lenge is to provide predictable performance and agility in response

to fluctuations in link quality, variable workloads, and topology

changes. We propose WARP to address this challenge. WARP uses

programs to specify a network’s behavior and includes a synthesis

procedure to automatically generate such programs from a high-

level specification of the system’s workload and topology. WARP has
three unique features: (1) WARP uses a domain-specific language to

specify stateful programs that include conditional statements to

control when a flow’s packets are transmitted. The execution paths

of programs depend on the pattern of packet losses observed at run-

time, thereby enabling WARP to readily adapt to packet losses due

to short-term variations in link quality. (2) Our synthesis technique

uses heuristics to improve network performance by considering

multiple packet loss patterns and associated execution paths when

determining the transmissions performed by nodes. Furthermore,

the generated programs ensure that the likelihood of a flow deliver-

ing its packets by its deadline exceeds a user-specified threshold. (3)

WARP can adapt toworkload and topology changeswithout explicitly
reconstructing a network’s program based on the observation that

nodes can independently synthesize the same program when they

share the same workload and topology information. Simulations

show that WARP improves network throughput for data collection,

dissemination, and mixed workloads on two realistic topologies.

Testbed experiments show that WARP reduces the time to add new

flows by 5 times over a state-of-the-art centralized control plane

and guarantees the real-time and reliability of all flows.
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1 INTRODUCTION
Over the last decade, we have seen the development of transmission

scheduling techniques (see [18, 21] for overviews) and their wide-

spread adoption in process control industries (e.g., [18, 22]). These

efforts have primarily focused on supporting real-time and reliable

communication over low-power networks composed of resource-

constrained devices that often run on batteries. In contrast, the

future Industrial Internet-of-Things (IIoT) applications will employ

sophisticated sensors such as cameras, microphones, or LIDAR,

which generate large volumes of data. The generated data will

be processed by embedded devices that are (grid) powered and

have sufficient processing resources to run machine learning and

computer vision algorithms. Such IIoT applications require that, in

addition to real-time and reliable communication, wireless protocols

also support higher data rates, handle variable workloads, and cope

with short-term fluctuations in link quality and topology changes.

As a concrete example, consider a John Deere’s 32-row planter

with 15 sensors per row [7], each of the 480 sensors generating

5 samples per second. A modern John Deere herbicide sprayer

requires even higher throughput to handle the traffic generated

by the approximately 250 cameras necessary for “sub-inch accu-

racy of the application of herbicide” [13]. Each sensor is powered

with a serial line running along the tractor’s boom or chassis and

wirelessly transmits images over multi-hop real-time flows to the
tractor processing platform where machine learning techniques

are used to classify the types of weeds in the video stream. In re-

sponse, commands are sent to herbicide spray nozzles to target the

identified weeds. Mesh networking techniques can be applied for

fault-tolerance. An effective wireless solution must also handle the

dynamic wireless conditions observed in the field (e.g., variable

humidity and dust, which affects signal propagation) and adapt

communication schedules as the sensing rates change with the

driving speed and field conditions.

The contribution of this paper is WARP – a novel approach that

uses software synthesis to meet the demands of the future IIoT ap-

plications. Software synthesis usually relies on SMT solvers and re-

quires resource-rich machines. These techniques need to be adapted

to embedded devices and extended to build wireless networks that

provide real-time and reliable performance in the presence of net-

work dynamics. Three components support this goal: (1) a data

plane whose operation is specified as programs that are more ex-

pressive than traditional schedules; (2) a scalable software synthesis

procedure that generates programs that satisfy the flows’ deadline

https://doi.org/10.1145/3412382.3458270
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and reliability constraints; and (3) an efficient control plane to han-

dle workload and topology changes.

A network operator programs a WARP network by specifying

its workload. The workload is composed of real-time flows that

carry data between sensors, controllers, and actuators. Flows are

periodic, may span multiple hops, and deliver packets subject to

deadline and reliability constraints. We have developed techniques

to synthesize programs that specify the data plane’s behavior based

on the supplied workload and topology. The programs are written

in a domain-specific language (DSL) that can express more com-

plex behaviors than traditional scheduling approaches. A feature

that distinguishes programs from schedules is that programs are

stateful and may include conditional statements. The execution

of an instruction to forward a flow’s packet changes the flow’s

state to indicate whether the transmission succeeded or not. Sub-

sequent instructions may query this state and make conditional

decisions on what packets to forward. The combination of state

and conditional actions leads to programs havingmultiple execution
paths that depend on the pattern of packet losses observed during

their execution. This opens the opportunity to synthesize programs

whose actions are optimized to handle likely packet loss patterns

and readily adapt to the rapidly evolving packet loss patterns ob-

served during their execution. Our experiments demonstrate that

programs provide higher performance than scheduling approaches

while remaining simple to analyze.

The synthesis procedure ensures that the execution of programs

will not result in nodes performing conflicting operations. Addition-

ally, the synthesis procedure also guarantees that the likelihood of a

flow’s packets reaching their destination by their deadline exceeds

a user-specified threshold. This property holds under our Threshold

Reliability Model (TLR) that allows link quality to vary arbitrarily

from slot-to-slot but always remains above a minimum level of relia-

bility. WARP cannot guarantee the network’s performance when the

quality of links falls below the minimum packet delivery rate (PDR).

In this case, the minimum PDR may be lowered or the flow’s routes

may need to be adjusted to include links that meet the minimum

PDR. TLR is inspired by Emerson’s best practices for deploying

WirelessHART networks [19], which encourage network operators

to ensure that links have a minimum PDR of 60% – 70% at deploy-

ment time. We have developed a computationally efficient approach

to reason about the probability of delivering packets under TLR by

considering all packet loss scenarios and their associated execution

paths and likelihoods.

WARP includes a decentralized control plane that can adapt to

workload and topology changes without synthesizing new pro-

grams. Our insight is that when nodes share the same topology and

workload information, they can run the same synthesis procedure

locally to generate identical programs. This approach significantly

improves the network’s agility since workload or topology changes

only require disseminating the added or modified flows and routes.

Such updates can be encoded efficiently, most often, in a single

packet. However, the challenge is to implement WARP’s program
synthesis on embedded devices on which it is infeasible to run

SMT solvers that are commonly used in software synthesis. Within

10 ms slots, WARP can synthesize and execute programs on-the-fly

on TelosB and Decawave DWM1001 devices.

Protocol Data Rate Workload Energy
WirelessHART low fixed constrained

REACT [15] low variable constrained

FD-PaS [24]

DistributedHART [20]

WARP high variable unconstrained

Table 1: Requirements space of IIoT protocols

We have evaluated WARP through simulations and testbed exper-

iments using workloads typical in IIoT systems. Our simulations

indicate that WARP can significantly improve throughput across

typically IIoT workloads in two realistic topologies. We have im-

plemented our techniques on Decawave DWM1001, which use

802.15.4a radios, and on TelosB, which use 802.15.4 radios. The

testbed experiments demonstrate the feasibility of using synthe-

sis techniques to construct programs on-the-fly. Furthermore, our

experiments validate that WARP can satisfy the real-time and relia-

bility constraints of flows and adapt quickly to workload changes.

2 RELATEDWORK
Data plane: At the heart of wireless networks that support real-
time communication are transmission scheduling techniques (e.g.,

[16, 20, 23, 24] and surveys [18, 21]). For example, WirelessHART

specifies the data plane’s behavior using a (repeating) super-frame,

a two-dimension matrix whose cells grant access to a specific slot

and channel. Real-time traffic is supported by using dedicated cells

in which a single transmission is scheduled, while best-effort traffic

is supported using shared slots. Under these and similar assump-

tions about the data plane, researchers have developed numerous

algorithms to construct efficient schedules under different workload

scenarios and analyze their real-time and reliability performance.

A contribution of WARP is an intermediary language to specify a

“smart” data plane that allows a richer set of behaviors, including

the ability of multiple real-time flows to share the same entry for

improved performance.

The closest related work is Recorp [4], which proposes a policy-

based approach that, similar to WARP, can also share entries across

multiple flows. WARP improves upon Recorp in several important

ways: First, WARP’s DSL can specify more expressive programs than

Recorp policies. As a consequence, WARP can provide better perfor-

mance under more varied workloads than Recorp. Second, Recorp
is only suitable for IIoT applications whose workloads are fixed and

known apriori since it may take up to aminute to construct a Recorp

policy. In contrast, WARP can synthesize and execute programs on-

the-fly within 10 ms slots on embedded platforms. Finally, WARP
includes a new decentralized control plan that can adapt effectively

to changes in topology and workload.

Control plane: A common critique of approaches like Wire-

lessHART is that their centralized design leads to networks that

cannot adapt effectively to dynamics. Indeed, this is problematic

since any workload or topology changes requires creating a new

super-frame and disseminating it to all nodes. This process can be

particularly expensive when the super-frame is large and does not

fit within a single packet. Four broad approaches — incremental

scheduling, autonomous scheduling, distributed scheduling, and
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flooding-based approaches — have been proposed to address this

issue. REACT [15] reduces the control overhead by constructing

schedules incrementally and only disseminating the differences

between the current and the updated schedule. However, our exper-

iments show that REACT still needs to disseminate many packets

when the workload or topology changes significantly. Autonomous

scheduling approaches (see [11] for a survey) build super-frames

using the (partial) routing information already present at a node.

However, the increased agility comes at the cost of real-time perfor-

mance, which may not be acceptable for all IIoT applications. An

elegant alternative is to avoid complex control planes altogether by

building systems that do not depend on the topology (e.g., Blink [25]

or Low-power Wireless Bus [12]). In contrast to these approaches,

WARP maintains the observability of network operations while de-

centralizing the control plane to support both topology and work-

load changes efficiently.

Two recent decentralized approaches that support real-time per-

formance have been recently proposed: FD-PaS [24] and Distribut-

edHART [20]. FD-PaS is designed to efficiently change the flows’

rates in response to external disturbances by piggybacking rate

updates in the packet acknowledgments of a flow. Distributed-

HART uses a node-level scheduling where each node schedules

its transmissions locally and online through a time window allo-

cation. However, FD-PaS does not consider topology changes, and

such changes can trigger expensive network-wide changes in Dis-

tributedHART. We have developed a control plane based on the

observation that nodes can independently construct the same WARP
program when they share the same workload information. Table 1

compares and contrasts the features of WARP and related protocols.

Program Synthesis: Program synthesis has been used to syn-

thesize network updates, routing tables, and network policies from

high-level specifications (e.g., [10]). To the best of our knowledge,

we are the first to use such techniques to specify and synthesize

programs that control the data plane of wireless networks. Program

synthesis commonly relies on powerful SMT solvers, machines

with plentiful resources, and is applied in scenarios where it is

acceptable to spend minutes to hours to synthesize programs. We

target embedded devices that must synthesize programs on-the-fly

within 10 ms slots. More importantly, the vast majority of ongoing

work focuses on verifying safety and deterministic properties. We

developed new techniques to analyze the reliability of flows sub-

ject to probabilistic packet losses due to variations in link quality.

Specifically, we identified a subset of WARP DSL that is expressive

enough to provide significant performance gains while remaining

sufficiently simple to enable efficient synthesis and analysis.

3 SYSTEM MODELS
NetworkArchitecture:A network is comprised of a network man-
ager, a base station, and up to a hundred nodes. WARP is best-suited

for applications that require high data rates and have a backbone

of grid-powered nodes to carry this traffic (e.g., [2, 6]). A network
manager is a resource-rich machine that is connected over a wired

connection to the base station. The nodes form a wireless mesh

network that we model as a graph 𝐺 (N , E), where N and E repre-

sent the devices (including the base station) and wireless links. The

network manager constructs a minimum spanning tree that has the

base station as its root. The route of a flow from 𝐴 to 𝐵 (both dis-

tinct from the base station) is obtained by concatenating the route

from 𝐴 to the base station and from the base station to 𝐵. We adopt

this model for consistency with prior work on WirelessHART, but

WARP also supports peer-to-peer routing without modification. We

categorize flows as upstream or downstream depending on whether

they forward data to or from the base station, respectively.

Workload Model: The traffic of a WARP network is specified as a

set of real-time flows F = {𝐹0, 𝐹1, . . . , 𝐹𝑁 }. A real-time flow 𝐹𝑖 is a

fixed route Γ𝑖 that packets traverse through the network and has

several associated attributes described next. In the wider network

community, flows are streams of packets; for real-time contexts,

flows are sequences of independent packets generated periodically

at the source and must be delivered to the destination by the dead-

line. A flow’s packets usually carry sensor data or actuation com-

mands. WARP allows flows to be added, removed, or modified during

the network’s operation. This capability is useful for applications

that dynamically reconfigure the sensors they use or change their

workload in response to external events.

For each flow 𝐹𝑖 , a packet is generated on the source node with

a period of 𝑃𝑖 and phase 𝜙𝑖 . The k
𝑡ℎ

instance of flow 𝐹𝑖 — 𝐽𝑖,𝑘 —

is released at time 𝑟𝑖,𝑘 = 𝜙𝑖 + 𝑘 ∗ 𝑃𝑖 and has an absolute deadline

𝑑𝑖,𝑘 = 𝑟𝑖,𝑘 + 𝐷𝑖 . We assume that 𝐷𝑖 ≤ 𝑃𝑖 , which implies that only

one instance of a flow is released at any time. For clarity, we will

discuss the algorithms in terms of flows rather than instances.

Physical Layer: At the physical layer, WARP may use either IEEE

802.15.4, which provides 250 kbps, or themore recent IEEE 802.15.4a,

which supports up to 27.24 Mbps. Both physical layers operate in

the 2.4 GHz band. Channel hopping is used to improve reliability.

802.15.4 supports frequency hopping over 16 channels. 802.15.4a

provides further protection against interference by using UWB tech-

niques. We configured the DWM1001 radios to use three orthogonal

channels, as described in [8].

Entries, Pushes, and Pulls: WARP programs use both time division

and multiple channels. We refer to a slot and channel pair as an
entry. Programs may include a single push or a single pull within
an entry of 10 ms. A push(𝐹𝑖 , #ch) involves the sender transmitting

𝐹𝑖 ’s data and the receiver replying with an acknowledgment, both

transmissions using channel #ch. A push fails if the acknowledg-

ment is not received by the end of the slot. A pull(𝐹𝑖 , #ch) involves
the receiver requesting 𝐹𝑖 ’s data and the sender replying with the

flow’s data on channel #ch. A pull fails if the data is not received by
the end of the slot. A program may handle failed pushes or pulls by
repeating the action several times to achieve the desired reliability.

We will refer to the node initiating the communication of a push or

a pull as the coordinator and the responding node as the follower.
Constraints:A WARP programmust meet the following constraints:

• Transmission constraints: A node transmits or receives at most

once per slot.

• Channel constraints: At most one transmission is performed in an

entry to avoid intra-network interference. Additionally, a node

must perform consecutive transmissions on different channels.

• Forwarding constraints: Each flow has at most one link that is

active in any slot. The first link on the flow’s route is activated

at release time; subsequent links are activated as the previous

ones complete relaying the packets.
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• Real-time and reliability constraint: The likelihood that the pack-

ets of a flow reach their destination before their deadline exceeds

an end-to-end probability target.

4 WARP
Layer Responsibilities: WARP is a practical and effective solution

for IIoT applications that require high-data rates, real-time, and

reliable communication in dynamic wireless environments. The

data plane handles packet losses due to probabilistic and variable

links, whereas the control plane handles topology and workload

changes. A central aspect of WARP is that each node executes a state-

ful program that controls when it transmits the packets of real-time

flows. Programs specified using the DSL described in Section 4.1

can express more intricate actions than possible using traditional

schedules. A node’s program tracks the success or failure of a flows’

transmissions and, based on this state, it executes different trans-

missions depending on the pattern of observed packet losses. This

approach improves network performance significantly. In Section

4.2, we propose techniques to analyze a program’s execution in the

presence of packet losses and introduce the TLR model to specify

how the quality of links vary.

Data Plane: WARP incorporates a scalable program synthesis pro-

cedure that turns a high-level specification of the workload and

topology into a program that is executed by the network. The

synthesis procedure incorporates a generator and an estimator
described in Section 4.3.1 and 4.3.2, respectively. The estimator
reasons about the possible execution paths of a program under

all failure scenarios and determines the likelihood of each reach-

able state (under the assumptions of the TLR model). Based on

this information, the generator heuristically increases the number

of flows that execute in each slot across multiple possible failure

scenarios. The synthesized programs’ execution guarantees that

the likelihood of each flow’s packets reaching their destination

by its deadline exceeds a user-specified threshold. This guarantee

holds only when the network’s behavior is consistent with the TLR

model: (1) consecutive transmissions are independent and (2) the

chance of successful transmission can vary, but it always exceeds a

minimum threshold𝑚. When the network deviates from the TLR

model, either new routes that use links that conform to the TLR

model should be selected or the value of𝑚 should be lowered. The

synthesis procedure may fail to generate a program when the work-

load is close to the network’s capacity. In this case, the workload has

to be adjusted manually by the network operator or automatically

using rate control mechanisms. As discussed next, our goal is to

run the synthesis on embedded devices. Therefore, we focus on

synthesis techniques that use light-weight heuristics.

Control Plane: Similar toWirelessHART, WARPmanages the topol-

ogy and workload information centrally. However, we decentralize

the synthesis and adaption to workload changes, as detailed in

Section 4.4. In contrast to scheduling approaches, WARP does not

construct an explicit schedule but instead runs the synthesis proce-

dure on each node on-the-fly to determine its actions in a slot. All

the nodes will construct the same program as long as they share

the same workload and topology information. The decentralized

control plane handles workload and topology changes by dissemi-

nating only the updated workload or topology information. This

fragment := release-blk; action_blk; drop_blk
release_blk := release(flow, link); | release_blk
drop_blk := drop(flow); | drop_blk
action_blk := action | if-statement
if-statement := if bool-expr then action else-part
else-part := else action_blk | 𝜖
bool-expr := has(flow) | !has(flow)
action := pull(flow, channel) | push(flow, channel) |

wait(channel) | sleep

Figure 1: EBNF rules of a WARP fragment

B

A

C

F0 F1

(a) Topology

Slot Node A Node B Node C

0 release(𝐹0 , 𝐵𝐴) release(𝐹0 , 𝐵𝐴) release(𝐹0 , 𝐵𝐴)
release(𝐹1 ,𝐴𝐶) release(𝐹1 ,𝐴𝐶) release(𝐹1 ,𝐴𝐶)
pull(𝐹0 , #0) wait(#0)

1 if !has(𝐹0) then pull(𝐹0 , #1) wait(#1) wait(#1)
else push(𝐹1 , #1)

2 push(𝐹1 , #2) sleep wait(#2)

(b) WARP program

F0: F
F1: F

10%

F0: F
F1: F

100%

F0: S
F1: F

90%

F0: F
F1: F

1%

F0: S
F1: F

18%

F0: S
F1: S

81%

F0: F
F1: F

0.1%

F0: S
F1: F

2.7%

F0: S
F1: S

97.2%

pull(F0,#1)

pull(F0,#0)

pull(F0,#0) pull(F0,#1)

pull(F1,#1)

pull(F1,#1)

pull(F1,#2)

pull(F1,#2)

pull(F1,#2)

pull(F1,#2)

(c) Node 𝐴’s execution DAG

Figure 2: Flows 𝐹0 and 𝐹1 forward packets from 𝐵 to 𝐴 and from 𝐴

to 𝐶 according to WARP program in Figure 2b. Due to packet losses,

a program’s execution may follow different paths and those paths

are summarized in its execution DAG, shown in Figure 2c.

results in a more agile control plane since transmitting workload

and topology updates requires fewer bytes than complete programs.

4.1 The WARP Domain-Specific Language
4.1.1 An Example. Before formalizing the DSL, we will introduce

WARP programs informally through an example that implements

a new mechanism to arbitrate access to a shared entry among

multiple flows. Consider the queue of an intermediary node in the

routing tree that includes the packets of different flows. Some flows

go towards the base station, others away from it. These queues

grow as the workload increases until one node fails to forward

a packet by the flow’s deadline. To support high data-rate flows,

WARP generates node programs that coordinate the interactions of

a node with its neighbors to forward its queued packets efficiently.

To illustrate the specifics of this mechanism consider Figure 2b.

The included program forwards 𝐹0’s data from 𝐵 to 𝐴 and 𝐹1’s

data from 𝐴 to 𝐶 . Both flows release a packet in slot 0. Each node

executes a node program organized as an array of fragments, each
fragment specifying the actions that the node performs in a slot.

The table in Figure 2b shows each node program as a column and

its fragments as the column’s entries. Flows 𝐹0 and 𝐹1 each release

a packet in slot 0 as reflected by the releases included in the slot
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0 fragment of all nodes. The releases create a globally consistent

view of what flows are released in the network. In slot 0, 𝐴 also

executes a pull(𝐹0, #0) to request 𝐹0’s data from 𝐵 over channel

#0. Node 𝐴’s pull is paired with a wait(#0) executed by 𝐵, which

instructs 𝐵 to listen for an incoming request on channel #0. When

𝐵 receives 𝐴’s request, it will reply with 𝐹0’s data.

The most visible departure from schedules is the inclusion of

conditional statements in programs, as shown in the fragment
executed by 𝐴 in slot 1. The execution state of a node program
is updated to record the outcome of push and pull actions. The
has instruction may be used to query a program’s state. When

has is combined with if statements, the node program may take

different actions depending on its execution state. After completing

slot 0, 𝐹0’s packet may be at either 𝐴 or 𝐵, depending on whether

pull(𝐹0, #0) has succeeded (S) or failed (F). Node 𝐴 queries its state

to distinguish between these two cases. If 𝐴 does not have 𝐹0’s

data, then 𝐴 requests 𝐹0 again; otherwise, 𝐴 proceeds to transmit

𝐹1’s data using a push. In this slot, both 𝐵 and 𝐶 wait to respond

to 𝐴’s pull or push on channel #1. This example illustrates how

𝐴 can coordinate the transmissions of 𝐹0 and 𝐹1 across different

execution paths, allowing them to share slot 1 and channel #1,

without introducing transmission conflicts or resorting to carrier

sense. WARP programs use this mechanism pervasively, and our

experiments show that it can improve the throughput by 2.6 times

over scheduling approaches.

4.1.2 The DSL. Next, we formalize an intermediary DSL to spec-

ify the behavior of WARP’s data plane. The DSL formally specifies

the actions that WARP programs can perform in a slot and their

associated run-time behavior. We opted to use a DSL to specify pro-

grams as programs should be a familiar abstraction and the analysis

techniques introduced later have similarities to symbolic execution

techniques used to analyze computer programs [3]. While the DSL

is not intended to be used directly by network operators or devel-

opers, developers can be used it for manually analyzing network

programs. The DSL is primarily intended for automated synthesis

and analysis tools.

A network operator specifies the workload of a WARP network as
a collection of real-time flows. The conceptual model used to pro-

gram the network is a distributed collection of nodes that operate

synchronously to forward the specified flows. Consistent with this

node-centric perspective, a program is structured as a collection of

node programs, each executed by a node. A node program is an
array of fragments indexed by the slot in which the fragment is
executed. The program is executed cyclically such that when a node

reaches the last instruction of a node program, the node restarts
executing it from the beginning. A network manager maintains

the workload and constructs a routing table to forward the data

of all flows. This information is replicated on each node, and node
programs can access it.

The building blocks of the DSL are global events and local ac-
tions. The release(𝐹𝑖 , 𝑙) and drop(𝐹𝑖 ) are global events that control
when link 𝑙 on 𝐹𝑖 ’s route is activate. A global event is scheduled

in slot 𝑡 by including a release(𝐹𝑖 , 𝑙) or a drop(𝐹𝑖 ) in the fragment
associated with slot 𝑡 in the node programs of all nodes. When

a node program’s execution reaches slot 𝑡 , the scheduled global

event is executed synchronously by all nodes without requiring

communication. Note that a globally consistent view is necessary

to determine whether the actions in a slot may conflict. Flow 𝐹𝑖
can transmit over link 𝑙 only in the slots ranging from the slot in

which 𝐹𝑖 is released to the slot in which 𝐹𝑖 is dropped. Since releases
and drops are global events, all nodes know the interval when the

packets of 𝐹𝑖 may be forwarded over link 𝑙 , but not all of them

know the specific slots in this interval that will be used to transmit

𝐹𝑖 ’s packets
1
. The supported actions are push, pull, wait, and sleep.

A fragment may include multiple actions using if-statements, but

only one action can be executed at run-time. The execution state of

a node program may change in response to executing a push or a

pull. The effect of an action is local, affecting only the node execut-

ing the action. A node program may include a has instruction to

query a flow’s status and conditional statements to allow actions

to be executed conditionally on its execution state.

Let us define how a node program’s execution state is updated

when it is executed by a node 𝐴. 𝐴 maintains a dictionary𝑀 that

maps a flow to its status. A flow’s status is updated according to the

state machine shown in Figure 3. When 𝐴 executes release(𝐹𝑖 , 𝐴𝐵),
it adds a mapping𝑀 [𝐹𝑖 ] = RELEASED to indicate that 𝐹𝑖 is released

and 𝐴𝐵 is its active link. It is possible that 𝐹𝑖 ’s packet may not be

in 𝐴’s receive queue if it was dropped on a previous hop. In this

case, a packet containing an error indicating that 𝐹𝑖 ’s packet was

dropped is generated and forwarded by 𝐴 as if it was the original

packet of the flow. 𝐹𝑖 ’s entry is removed from𝑀 when 𝐴 executes

drop(𝐹𝑖 ) and 𝐹𝑖 is considered to be COMPLETED. A flow’s status is

updated depending on the outcome of push and pull.
When 𝐴 is the source of an outgoing flow 𝐹𝑖 , it has to forward

its packets to the next hop using pushes. Let 𝐵 be this next hop,

determined by 𝐴 inspecting its local copy of the routing table. The

execution of push(𝐹𝑖 , #ch) entails𝐴 sending 𝐹𝑖 ’s data on channel #ch

and waiting for an acknowledgment. The fragment that 𝐵 executes

in the same slot must include a wait(#ch) to instruct 𝐵 to listen for

an incoming request on channel #ch. If node 𝐵 receives the pushed

packet, it sends an acknowledgment to 𝐴. Node 𝐴 knows whether

the push(𝐹𝑖 , #ch) was successful if it receives the acknowledgment

by the end of the slot. In this case, the𝑀 [𝐹𝑖 ] is set to SUCCESSFUL;
otherwise,𝑀 [𝐹𝑖 ] remains RELEASED.

When𝐴 is the destination of an incoming flow 𝐹𝑖 , it has to obtain

its data from the previous hop using pull actions. When release(𝐹𝑖 ,
𝐵𝐴) is executed by 𝐴, 𝐹𝑖 ’s packet is at the previous hop 𝐵. In a

slot, the execution of pull(𝐹𝑖 , #ch) by 𝐴 to request 𝐹𝑖 ’s data over

channel #ch is paired with the execution of wait(#ch) by 𝐵. Node 𝐴
can determine whether the pull(𝐹𝑖 , #ch) was successful depending
on whether it receives the request data from 𝐵 by the end of the

slot. If 𝐴 receives the data, 𝐴 updates𝑀 [𝐹𝑖 ] to be SUCCESSFUL;
otherwise, the flow’s status remains RELEASED.

The grammar of a fragment is included in Figure 1. A fragment
has three blocks: a release block, an action block, and a drop block.
The release block may include one or more releases to start for-

warding packets over a flow’s active link. Similarly, the drop block

may include one or more drops to indicate that a flow’s active link

will no longer be executed for the remainder of the program. The

action block may include one of push, pull, wait, or sleep in the

1
The specific slots (and fragment) in which releases and drops are included is deter-

mined during synthesis based on the network’s topology and workload.
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SUCCESSRELEASED COMPLETED

push(Fi) OR pull(Fi) 
failed

drop(Fi) 

release(Fi)

push(Fi) OR
pull(Fi) 

success

drop(Fi)

Figure 3: State machine describing how 𝐹𝑖 ’s status is updated. The

has(𝐹𝑖 ) is false when 𝐹𝑖 ’s status is RELEASED and true otherwise.
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Workload:

(a) Topology

Slot→ 0 1 2 3 4 5 6

𝐹0 (CB) (CB) (BA) (BA) (BA) - -

𝐹1 (DB) (DB) (DB) (BA) (BA) (BA) -

𝐹2 (AB) (AB) (AB) (AB)

(b) Slots when each link of a flow is active

Slot Node A Node B Node C Node D

0 release(𝐹0 ,𝐶𝐵) release(𝐹0 ,𝐶𝐵) release(𝐹0 ,𝐶𝐵) release(𝐹0 ,𝐶𝐵)
release(𝐹1 , 𝐷𝐵) release(𝐹1 , 𝐷𝐵) release(𝐹1 , 𝐷𝐵) release(𝐹1 , 𝐷𝐵)
sleep pull(𝐹0 , #0) wait(#0) sleep

1 sleep if !has(𝐹0) then pull(𝐹0 , #1) wait(#1)
else pull(𝐹1 , #1) wait(#1)

drop(𝐹0) drop(𝐹0) drop(𝐹0) drop(𝐹0)
2 release(𝐹0 , 𝐵𝐴) release(𝐹0 , 𝐵𝐴) release(𝐹0 , 𝐵𝐴) release(𝐹0 , 𝐵𝐴)

sleep pull(𝐹1 , #2) sleep wait(#2)
drop(𝐹1) drop(𝐹1) drop(𝐹1) drop(𝐹1)

3 release(𝐹1 , 𝐵𝐴) release(𝐹1 , 𝐵𝐴) release(𝐹1 , 𝐵𝐴) release(𝐹1 , 𝐵𝐴)
release(𝐹2 ,𝐴𝐵) release(𝐹2 ,𝐴𝐵) release(𝐹2 ,𝐴𝐵) release(𝐹2 ,𝐴𝐵)
pull(𝐹0 , #0) wait(#0) sleep sleep

4 if !has(𝐹0) then pull(𝐹0 , #1) wait(#1) sleep sleep
else pull(𝐹1 , #1)
drop(𝐹0) drop(𝐹0) drop(𝐹0) drop(𝐹0)

5 if !has(𝐹1) then pull(𝐹1 , #2) wait(#1) sleep sleep
else push(𝐹2 , #1)
drop(𝐹1) drop(𝐹1) drop(𝐹1) drop(𝐹1)

6 push(𝐹2 , #2) wait(#2) sleep sleep
drop(𝐹2) drop(𝐹2) drop(𝐹2) drop(𝐹2)

(c) Program forwarding the packets of 𝐹0, 𝐹1, and 𝐹2

Figure 4: Example program forwarding the data of three flows

base case. We allow for the inclusion of conditional if-then-else

statements. As part of the condition, a program may use has(𝐹𝑖 )
or its negation !has(𝐹𝑖 ) to determine whether node 𝐴 has 𝐹𝑖 . The

instruction has(𝐹𝑖 ) is true when𝑀 [𝐹𝑖 ] is SUCCESSFUL or COM-
PLETED. In any slot, we constrain a node to execute at most one

action per slot to guarantee its completion by the end of the slot.

In the following, we consider a more involved example that for-

wards the packets of three multi-hop flows. There are many possible

programs to forward the flows, each having different performance

trade-offs. Figure 4 shows the program generated by our synthesis

procedure. The table in Figure 4b shows the slots in which each link

of a flow is activate. All the nodes share this view in the network.

For example, 𝐹0 forwards packets over Γ0 ={(CB), (BA)}. Link (𝐶𝐵)
and (𝐵𝐴) are active in slots 0 – 1 and 2 – 4. Since a flow has at

most one active link at a time, the two intervals do not overlap. The

fragments use different combinations of pull and push actions in

conjunction with conditionals to determine when and what packets

to transmit. In contrast to shared slots in scheduling approaches,

WARP avoids carrier sense by using conditional logic to determine

which node may transmit.

4.2 Analyzing WARP Programs
A key challenge is to reason about the execution of WARP programs

in the presence of stochastic packet losses. We want to estimate

the likelihood of property 𝛽𝑖 that a packet of a flow 𝐹𝑖 reaches the

destination by 𝐹𝑖 ’s deadline. As a starting point, let us model the

quality of all links as Bernoulli variables with known and fixed

chances of success. We assume that a push or a pull performed over

a link has a 90% chance of success for concreteness. To compute

the likelihood of 𝛽𝑖 , it suffices to consider all possible packet loss

scenarios and sum the likelihood of all scenarios in which the prop-

erty 𝛽𝑖 holds. We use the notation Π𝑡 (𝑠) to indicate the likelihood

of reaching state 𝑠 after executing 𝑡 slots. A brute-force approach to

accomplish this goal is to construct an execution DAG that captures

all possible execution paths through the program under different

failure scenarios. The execution DAGs introduced here will be later

refined to support the analysis of synthesized programs efficiently.

Node𝐴’s execution DAG could be built as follows (see Figure 2c).

The symbols S and F indicate whether a pull or a push executed

by a flow 𝐹𝑖 was successful or failed (i.e., when has(𝐹𝑖 ) is true
or false). Flows 𝐹0 and 𝐹1 are released in slot 0. Accordingly, the

initial state FF indicates that 𝐴 does not have the packets of either

𝐹0 or 𝐹1. The likelihood of reaching FF and FS after executing

the pull(𝐹0, #0) in slot 0 is Π1 (FF) = 10% × Π0 (FF) = 10% and

Π1 (SF) = 90%×Π0 (FF) = 90%. It is important to note the difference

in the information available during synthesis/analysis and run-time

execution. During analysis and synthesis, we do not know whether

𝐴’s execution state is FF or SF; we only know their likelihoods.

However, at run-time, 𝐴 knows its state precisely as it can observe

the outcome of its actions.

In slot 1, the actions that 𝐴 performs depend on its current state.

In the state FF, when 𝐴 does not have 𝐹0’s data, it will execute

pull(𝐹0, #1) to request the data from 𝐹0 again. Depending on the

pull’s outcome, the system transitions to either FF or SF. The state
FF is reached when both pulls executed in slot 0 and 1 have failed.

The state SF is reached over two paths: when pull(𝐹0, #0) failed
in slot 0 but succeeded in slot 1 and when pull(𝐹0, #1) in slot 0

has succeeded and push(𝐹1, #1) in slot 1 failed. Accordingly, the

likelihood of reaching SF by the end of slot 2 is Π2 (SF) = 90% ∗
Π1 (FF) + 10% ∗ Π1 (SF) = 18%. The execution of the remaining

instructions results in the shown execution DAG. The likelihood

that 𝐴 receives 𝐹0 and 𝐹1 by the end of the program are 𝐸0
3
=

Π3 (SF) + Π3 (SF) = 97.2% + 2.7% = 99% and 𝐸1
3
= Π3 (SF) = 97.2%.

A significant limitation of the above approach is that the obtained

results are applicable only when all links have a quality of exactly
90%. What happens if the link quality increases to 95%? How about

when links have different link qualities? It is hard to extrapolate a

network’s behavior from point estimates when each link’s quality

can vary from slot to slot. To broaden the applicability of this

approach, we need a more realistic reliability model.

We propose the Threshold Link Reliability (TLR) model, which is

both simple and realistic. TLR models the likelihood that an action

(i.e., a push or pull) of flow 𝐹𝑖 (including both exchanges of data

between sender and receiver) is successful as a Bernoulli variable

𝐿𝑄𝑖 (𝑡). We assume that consecutive pushes or pulls performed

over the same or different links are independent. Empirical studies

suggest that this property holds when channel hopping is used [14,
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17]. TLR has only one parameter – the minimum PDR𝑚, which

lower bounds the values of 𝐿𝑄𝑖 (𝑡) such that𝑚 ≤ 𝐿𝑄𝑖 (𝑡) ∀𝑖 ∈ F , 𝑡 ∈
N. A strength of TLR is that aside from the lower bound𝑚 on link

quality, we make no assumptions regarding how the quality of a
link varies from slot to slot. This characteristic makes TLR widely

applicable and may be integrated with the current practices for

deploying IIoT wireless networks. For example, Emerson engineers

suggest thatWirelessHART networks should be deployed to provide

a minimum PDR between 60–70% [19]. Thus, we set𝑚 to 70%.

The problem of ensuring that the likelihood of a flow’s 𝐹𝑖 packets

are delivered to the destination over multiple hops before 𝐹𝑖 ’s dead-

line exceeds the probability target𝑇𝑖 can be mapped onto single-hop

requirements. Let 𝐿𝑖 be a lower bound on the likelihood that 𝐹𝑖 is

delivered at each hop. Then, the likelihood of delivering the packet

end-to-end must be at least Π
num-hops(𝐹𝑖 )
ℎ=0

𝐿𝑖 = 𝐿
num-hops(𝐹𝑖 )
𝑖

, where

num-hops(𝐹𝑖 ) is the number of hops on 𝐹𝑖 ’s route. Therefore, if

at each hop a flow’s packet is delivered with a likelihood of at

least 𝐿𝑖 = 𝑇

1

num-hops(𝐹𝑖 )
𝑖

, then the end-to-end requirement is also met.

Accordingly, we will refer to 𝐿𝑖 as the local reliability target. We

will show that when the structure of programs is appropriately

constrained (as described in Section 4.3), a flow’s local reliability

estimated using execution DAGs with 𝐿𝑄𝑙 = 𝑚 is a safe lower

bound on the flow’s reliability when 𝐿𝑄𝑙 ≥ 𝑚. WARP relies on exe-

cution DAGs to determine the states that programs may reach due

to packet losses, optimize the synthesized programs across multi-

ple execution paths, and ensure that the real-time and reliability

constraints are met.

4.3 Synthesizing WARP Programs
WARP improves a network’s throughput by enabling the transmis-

sions of multiple flows to share the same entry. The synthesis pro-

cedure is modeled as a sequential decision problem that involves an

estimator and a generator (see Figure 5). In a slot 𝑡 , the generator
emits a partial fragment per node that specifies the release and

action blocks that the node will execute. The generator ensures that
regardless of the possible execution paths that a program may take

due to packet losses, its actions satisfy the transmission, channel,

and forwarding constraints (see Section 3). Next, the estimator up-
dates the execution DAG of each node to account for the generated

partial fragment. The estimator ensures that the real-time and reli-

ability constraint is satisfied by evaluating when a node program
includes sufficient pushes or pulls to deliver a flow’s packets over

its active link with a likelihood higher than its local probability

target. When this occurs, the generator emits a drop block that

includes a drop for each flow that meets its local probability tar-

get. The complete fragment including the release, action, and drop

blocks are then executed at run-time consistent with the semantics

described in Section 4.1.

Before considering the generator’s and estimator’s details, let
us introduce a heuristic that will be used during synthesis. We

categorize flows as upstream or downstream depending on whether

they forward data to or from the base station, respectively. During

synthesis, we will use pulls for the transmissions of upstream flows

and pushes for the transmissions of downstream flows. To build an

intuition behind this heuristic, consider multiple upstream flows

forwarding data towards the base station. An intermediary node in

the routing treemay have several childrenwith data to be forwarded

in their queues about the same time. The intermediary node may

coordinate data collection from those children using pulls since
it can observe whether it has received a child’s data successfully.

Multiple slots are allocated and shared by the children to forward

their data. Notably, over different execution paths, the children may

use different numbers of retransmissions, but sufficient slots are

allocated to guarantee that the likelihood that children forward

their packets exceeds the local target. The opposite scenario occurs

for downstream flows where an intermediary has multiple packets

for its children and coordinates their transmission using pushes. We

remind the reader that a push’s coordinator is the sender, whereas
a pull’s coordinator is the receiver.

4.3.1 Generator. The generator enforces the invariant that once a
flow starts its execution, it cannot be preempted (by another flow).

The generator distinguishes between two types of flows. A flow

is ready if it is released, but it has not begun execution yet. Once

the flow begins execution, it is considered to be executing. The
generator maintains a global ready queue that includes the ready

flows and an exec queue per node that include the node’s executing
flows. The ready queue is ordered by the priority of flows. In a slot

𝑡 , the queues are updated as follows:

• A flow 𝐹𝑖 is released when𝑚𝑜𝑑 (𝑡 − 𝜙𝑖 , 𝑃𝑖 ) = 0, and it is added

to the ready queue. The first link of the flow becomes active and

considered for potential execution.

• The generator considers each flow 𝐹𝑖 in the ready priority queue
and adds 𝐹𝑖 to the exec queue of its coordinator if it does not
conflict with any of the other flows that are already executing.

• The estimator is queried to obtain a lower-bound on the likeli-

hood that 𝐹𝑖 has been forwarded to its next hop. If the lower-

bound exceeds the local probability target, then 𝐹𝑖 is completed

and removed from exec. If 𝐹𝑖 has not reached its destination, then
the next link is activated and 𝐹𝑖 is added to the ready queue. If

𝐹𝑖 ’s deadline is reached before its packets reach the destination,

then the synthesis procedure fails and returns an error. This case

can be avoided by running admission control (see Section 4.4).

To check for transmission conflicts, each nodemaintains a conflict-
list that includes a list of nodes whose activities it will coordinate2.
Consider a flow 𝐹𝑖 that has an active link 𝐴𝐵 where 𝐴 is the coordi-

nator and 𝐵 the follower. The flow 𝐹𝑖 may be added without conflict

to 𝐴’s exec queue when 𝐴 is not in the conflict-list of any other

node in N \ {𝐴} and 𝐵 is not in the conflict-list of any other node

2
Note that the conflict-list may include a node multiple times.
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inN \ {𝐴, 𝐵}. In this is the case, 𝐹𝑖 is added to𝐴’s exec queue and 𝐵
is added to𝐴’s conflict-list. When a flow 𝐹𝑖 completes its execution,

𝐵 is removed from its conflict-list. By choosing appropriate data

structures, we can construct a generator that runs in 𝑂 ( |F |).
The generator produces the next fragment of a node program

based on the node’s exec queue. A fragment includes a release

block, an action block, and a drop block. The release block includes

all the flows that have been released in the current slot. The drop

block includes all flows that the estimator determined to have met

their local probability target. Note that since release and drop are

global events, they are included in all nodes’ fragments, so they

have a consistent view of when flows are released and dropped. If

the exec queue is empty, an action block that includes a single sleep
is generated. When there is a single flow in exec, either a push or a

pull is generated depending on whether the flow is downstream or

upstream, respectively. The actionwill use a channel that is assigned

by the coordinator. Each coordinator maintains a counter that is

initialized with a common random number and is incremented

each time it executes a push or a pull. The assigned channel is the

modulus of the counter and the maximum number of channels.

When exec has two or more flows, the action block is a sequence

of if-statements that enforce the invariant: a flow with index 𝑘 in

the exec queue will be executed only if all flows with index 𝑘 ′ < 𝑘

have been successful. For example, the action fragment associated

with exec = [𝐹0, 𝐹1, 𝐹2] is shown on top of Figure 6. In this case,

push(𝐹0, #0) is executed only if has(𝐹0) is false. The pull(𝐹1, #0) is
executed only if has(𝐹0) is true and has(𝐹1) is false consistent with
servicing 𝐹1 only if 𝐹0 is successful. Finally, pull(𝐹2, #0) is executed
only if 𝐹0 and 𝐹1 have been successful.

4.3.2 Estimator. The estimator computes lower bounds on the like-

lihood that a flow delivered its packet over the currently active link.

An arbitrary node 𝐴 runs an estimator that includes 𝑁 execution

DAGs, each execution DAG tracking a node’s state. In each slot,

the generator provides the estimator 𝑁 fragments (one fragment
per node), specifying the actions each node will execute in that

slot. Node 𝐴 updates a node’s execution DAG based on that node’s

fragment. Each execution DAG is updated independently and iden-

tically and, in the following, we will focus on how an arbitrary

execution DAG is updated. The execution DAG can be thought of

as a Markov Chain (MC) that unfolds over time as instructions are

executed. However, unlike traditional MCs, the number of states

grows and shrinks as flows start and complete their execution.

The estimator interprets a fragment in three stages consistent

with the structure of a fragment that has a release block, an ac-

tion block, and a drop block. Accordingly, we group the states

of the execution DAG into stages corresponding to the states ob-

tained after interpreting the releases, actions, and drops. We use

the ordered tuples (𝑡, 𝑅), (𝑡, 𝐴), (𝑡, 𝐷) to refer to the stage after

interpreting each block of the fragment in slot 𝑡 . Each stage will be

interpreted as the matrix product between the current state Π𝑡,𝑃𝐶

(where 𝑃𝐶 ∈ {𝑅,𝐴, 𝐷}) and a transition matrix that encodes the

block’s semantics. The size of the vector Π𝑡,𝑃𝐶 is the number of

instances in the exec queue in slot 𝑡 . The element Π𝑡,𝑃𝐶 [𝐹𝑖 ] is 𝐹𝑖 ’s
status and the result of has(𝐹𝑖 ) (see Figure 3).

Consider the case when exec = {𝐹0, 𝐹1, 𝐹2}. Since the generator
enforces the invariant that a flow 𝐹𝑖 cannot be executed until all
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Figure 6: The fragment executed includes a release, an action-block,

and a drop shown at the top of the figure. The bottom of the figure

includes the execution DAG where boxes represent the states and

the lines the transitions. States in the same column are in the same

stage with the index shown below in bold green font.

flows that have started their execution before 𝐹𝑖 are successful, the

possible states are FFF, SFF, SSF, SSS. In general, the states of a

stage can be represented as strings given by the regular expression

S𝑘F𝑒−𝑘 , where S𝑘 is a sequence of 𝑘 successes, and F𝑒−𝑘 is a se-

quence of 𝑒 − 𝑘 failures, where 𝑒 is the maximum number of states

in the stage. The maximum number of states in a stage 𝑒 can be

related to exec queue’s size: 𝑒 = |exec| + 1. In the above example,

there are three flows and four associated states.

To illustrate how the execution DAG is managed, let us consider

the execution of the fragment shown in Figure 6. The example starts

in an arbitrary slot 𝑡 − 1 when exec ={𝐹0, 𝐹1 }. The possible states of
the stage are FF, SF, and SS. We assume that the initial likelihood

is Π𝑡,𝐷 = [0.1, 0.9, 0]. We will describe the actions as transitions

between a current and a next stage in the execution DAG.

The first instruction in the fragment is release(𝐹2, 𝐴𝐵). 𝐹2 is

added to the end of the exec queue, and its current status is failure

(F) since it was just released. A release can be interpreted as string

concatenation, where each state in the current stage is considered

and a next state is created by appending a F to the end the string to
account for 𝐹2’s initial state. An additional state is added to the next

stage to account for the case when all flows are successful. In our

example, the states after executing release are FFF, SFF, SSF, and
SSS. Since the status of 𝐹2 is failure the likelihood of the next states
is: Π𝑡,𝑅 (FFF) = Π𝑡−1,𝐷 (FF) = 0.1, Π𝑡,𝑅 (SFF) = Π𝑡−1,𝐷 (SF) = 0.9,

andΠ𝑡,𝑅 (SSF) = Π𝑡−1,𝐷 (SS) = 0. These equations can be expressed

as the product of Π𝑡,𝐷 and a release matrix 𝑅:

Π𝑡,𝐴 = Π𝑡,𝐷 ×

FFF SFF SSF SSS( )
1 0 0 0 FF
0 1 0 0 SF
0 0 1 0 SS

= [0.1, 0.9, 0, 0]
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In general, a release is interpreted as the product of the current

state and a release matrix 𝑅 of size 𝑒 × (𝑒 +1). All rows 𝑟 of a release
matrix 𝑅 have a single non-zero entry 𝑅 [𝑟, 𝑟 ] = 1 for 0 ≤ 𝑟 < 𝑒 .

Next, we consider the action block of the fragment and generate
a transition matrix 𝐴 that accounts for the entire block’s execution.

Let 𝐿𝑄𝑡 be the chance that the packets associated with the selected

action are transmitted successfully. 𝐿𝑄𝑡 is 90% in our example. Flow

𝐹0 is executed only in state FFF since it is the only state in which

!has(𝐹0) is true. If the action fails, the system remains in the same

with the likelihood 1−𝐿𝑄𝑡 ; otherwise, it transitions to the state SFF
with likelihood 𝐿𝑄𝑡 . Flow 𝐹1 is executed only in state SFF when

has(𝐹0) is false (i.e., 𝐹0’s status is success) and !has(𝐹1) is false. Upon
its execution, the system transitions to state SFF with likelihood

1 − 𝐿𝑄𝑡 and transitions to state SSF with likelihood 𝐿𝑄𝑡 . Similarly,

𝐹2 is executed in state SSF, causing the system to remain in state

SSFwith likelihood 1−𝐿𝑄𝑡 or transition to SSSwith likelihood 𝐿𝑄𝑡 .

Finally, no flow is executed in state SSS and the system remains in

this state with a likelihood of 1. The execution of the actions can

be accounted for according to the following matrix multiplication:

Π𝑡,𝐷 = Π𝑡,𝑅 ×

FFF SFF SSF SSS©­­«
ª®®¬

1 − 𝐿𝑄𝑡 𝐿𝑄𝑡 0 0 FFF
0 1 − 𝐿𝑄𝑡 𝐿𝑄𝑡 0 SFF
0 0 1 − 𝐿𝑄𝑡 𝐿𝑄𝑡 SSF
0 0 0 1 SSS

= [0.01, 0.18, 0.81, 0]

In general, the actions block can be represented as a matrix 𝐴 of

size 𝑒 × 𝑒 . All rows 𝑟 such that 𝑟 < 𝑒 − 1 have two non-zero entries:

𝐴[𝑟, 𝑟 ] = 1 −𝑚 and 𝐴[𝑟, 𝑟 + 1] =𝑚. The last row has all elements

zero except the last column, which is 1.

A drop(𝐹0) indicates that 𝐹0 has finished executing and is located
at the head of the exec queue. Similar to the release instruction, the

drop can also be treated as a string operation that considers each

state and generates a new state by removing the left-most character.

This results in the first two states having the same suffix and their

likelihoods are added when generating the single combined new

state. In our example, removing the first character of maps states

FFF and FSS on the same state FF. Thus, Π𝑡,𝐷 (FF) = Π𝑡,𝐴 (FFF) +
Π𝑡,𝐴 (SFF). For the rest of the states, Π𝑡,𝐷 (SF) = Π𝑡,𝐴 (SSF) and
Π𝑡,𝐷 (SS) = Π𝑡,𝐴 (SSS). These equations can be specified as the

following matrix product:

Π𝑡,𝑅 = Π𝑡,𝐷 ×

FF SF SS©­­«
ª®®¬

1 0 0 FFF
1 0 0 SFF
0 1 0 SSF
0 0 1 SSS

= [0.19, 0.81, 0]

In general, interpreting a drop involves multiplying the current

state with a matrix 𝐷 . Each row of 𝐷 has a single non-zero entry

that is one. The first row the non-zero entry is𝐷 [1, 1] = 1 and in the

remaining rows 𝑟 (1 ≤ 𝑟 < 𝑒) the non-zero entry is 𝐷 [𝑟, 𝑟 − 1] = 1.

Let 𝐸𝑖𝑡 be the likelihood that flow 𝐹𝑖 forwarded its packets by

slot 𝑡 . The local reliability of a flow 𝐹𝑖 may then computed as the

sum of all the states where the flow was successful. In our example,

𝐸0𝑡 = Π𝑡,𝐴 [SFF] + Π𝑡,𝐴 [SSF] + Π𝑡,𝐴 [SSS] = 0.99.

The TLR model allows the quality of links to vary from slot

to slot arbitrarily as long as it exceeds a minimum link quality

𝑚. The reliability of a flow 𝐹𝑖 is a function 𝐸𝑖𝑡 (𝐿𝑄0, 𝐿𝑄1, . . . 𝐿𝑄𝑡 )
that depends on the 𝐿𝑄𝑡 , which is likelihood that the the pull or
push in slot 𝑡 succeeds. We claim that a lower bound 𝐸𝑖𝑡 (𝑚) may

be computed by setting 𝐿𝑄𝑡 equal to the𝑚 in all matrices A that

encode action blocks:

𝐸𝑖𝑡 (𝑚) = 𝐸𝑡𝑖 (𝐿𝑄0 =𝑚, 𝐿𝑄1 =𝑚, . . . 𝐿𝑄𝑡 =𝑚) ≤ 𝐸𝑡𝑖 (𝐿𝑄0, 𝐿𝑄1, . . . 𝐿𝑄𝑡 )

Theorem 4.1. Consider a node A and a set of flows F𝐴 =

{𝐹0, 𝐹1, ..𝐹𝑀 } such that A is as either a source or a destination of
the 𝐹𝑖 ’s active link (𝐹𝑖 ∈ F𝐴). Let 𝐿𝑄𝑡 be the likelihood that the push
or pull performed in slot 𝑡 succeeds such that𝑚 ≤ 𝐿𝑄𝑡 ≤ 1 for all
slots t (𝑡 ∈ N) The local reliability 𝐸𝑖𝑡 (𝐿𝑄0, 𝐿𝑄1, . . . 𝐿𝑄𝑡 ) that 𝐹𝑖 ’s
packets are delivered over its active link is lower-bounded by 𝐸𝑖𝑡 (𝑚).

Proof. Due to space limits, the proof is included in [5]. □

Due to the structure of the synthesized code, the execution DAGs

can be managed very efficiently. The number of states in the execu-

tion DAG is |exec| + 1, each state requiring one floating-point per

state. To control the storage and computational requirements, we

have modified the generator to move an instance from the ready
to the exec queue only if the exec queue’s size is below a thresh-

old. Experiments show that setting this threshold to four entries

provides significant performance gains while introducing a small

memory and computational overhead. Specifically, we require that

a device maintain 5 × 𝑁 floating-points. A potential challenge with

implementing the execution DAG using matrix multiplication is

that floating-point operations tend to be slow or unsupported on

embedded devices. Our implementation avoids matrix multiplica-

tion altogether and further reduces memory usage by converting

multiplications into table look-ups. We divide the interval [0, 1] of
potential values into a small number of intervals. Since the tran-

sition matrix only depends on the parameter𝑚 of TLR, we cache

the results of multiplying each interval with𝑚. Our experiments

indicate that caching a small number of values provides a good

approximation of a flow’s reliability.

4.4 Control Plane
WARP uses a control plane similar to REACT’s [15] and, in the fol-

lowing, we will primarily highlight those differences. The unique

aspect of WARP is that it does not disseminate programs. Instead,

WARP disseminates the workload and topology changes, and nodes

independently reconstruct a shared schedule. A workload change

is initiated either by the network operator or by a node within

the network, sending a request to the base station to add, remove,

or modify a flow. A topology change is detected by the network

manager based on the periodic health reports provided by nodes.

In either case, WARP runs admission control to ensure that a fea-

sible program may be generated. If a program is not synthesized

successfully, then rate control techniques are applied to reduce

the workload. Due to the efficiency of our synthesis procedure,

the overhead of doing so is minimal. If a program is synthesized,

then WARP disseminates the topology and workload changes to all



IPSN ’21, May 18–21, 2021, Nashville, TN, USA Ryan Brummet, Md Kowsar Hossain, Octav Chipara, Ted Herman, and Steve Goddard

nodes which then synthesize the program. We use a broadcast tree

mechanism proposed in REACT to disseminate the topology and/or

workload changes.

Changes in workload and topology may be encoded and dissemi-

nated efficiently. The addition of a new flow requires disseminating

its associated parameters: a flow identifier, phase, period, deadline,

priority, and route. There are a small number of classes in most

applications, each class having its temporal parameters and priority

level. Accordingly, we can avoid disseminating the temporal and

priority of a flow and simply disseminating the class’s identifier for

the flow. Similarly, rather than disseminating a route, it suffices to

use a route identifier that refers to a route in the table maintained

by the node. Accordingly, to add a flow, it suffices to transmit a

total of 4 bytes – 2 for the identifier, 1 for the flow class, and 1 for

the route identifier. A command to remove the flow only requires

passing the identifier of the flow to be removed. Changes to the

routing information can also be encoded efficiently. The operations

that are allowed on the routing table is to add, duplicate, modify,

or delete routes. A common case is for a link to change, requiring

several routes to be modified. WARP handles this use case using a

modify command that treats each route as a string and performs

a search and replace operation. The key behind this approach’s

efficiency is that the operation is applied to all routes in the table.

5 EXPERIMENTS
Our experiments answer the following questions:

• Does WARP improve the throughput in typical IIoT workloads?

• Can WARP run on resource-constrained embedded devices?

• How agile is WARP’s control plane to workload changes?

• Can WARP satisfy the real-time and reliability constraints and

adapt to fluctuations in link quality?

We compare WARP against three baselines: CLLF, REACT, and
Recorp.CLLF is a heuristic approach to building near-optimal sched-

ules [23]. REACT improves the agility of control planes by constrain-

ing the construction of schedules such that they are easier to update

in response to workload and topology changes. In response to a

workload change, CLLF and REACT disseminate only the differ-

ences between the current and updated schedules. Recorp uses

an SMT solver to constructs policies that can share slots across

multiple flows. However, Recorp can take as long as a minute to

construct policies and uses a centralized control plane. We con-

sidered two versions of WARP— WARP and WARP*. WARP’s estimator

uses matrix operations while WARP* converts matrix operations to

table lookups to avoid floating-point operations. WARP*’s lookup
table is configured to use 527 bytes to balance memory usage and

performance. As the lookup table’s size increases, the difference in

the performance of WARP and WARP* decreases.
We set𝑚 = 70%, as suggested by Emerson’s guide to deploying

WirelessHART networks. In simulations, we set the probability of a

successful transmission to equal𝑚. The number of transmissions for

all protocols is set to achieve 99% end-to-end reliability for all flows.

Each experiment considers a different workload. However, a flow’s

period and deadline are equal, and its phase is zero in all workloads.

Except for CLLF, which uses a heuristic to assign priorities, flow

priorities are assigned such that flows with shorter deadlines have

higher priority. Additionally, flows with longer routes have a higher

priority and remaining ties are broken arbitrarily.

We quantified the performance of protocols using total through-

put, synthesis time, control overhead, and consensus time. The

total throughput is the maximum number of packets per second

that flows can deliver without missing the real-time or reliability

constraints. Synthesis time is the amount of time needed to synthe-

size programs or construct schedules. The control plane’s agility is

quantified by the number of bytes used for control overhead and

the consensus time until all nodes update the program or schedule

in response to a workload change.

5.1 Simulations
We have performed simulations on two real topologies: the Indriya

topology which includes 85 nodes and has a 6-hop diameter (Indriya

topology) [9], and the Washington Universtiy in St. Louis topology

which includes includes 41 nodes and has a 6-hop diameter (WashU

topology) [1]. The simulations use 802.15.4 with 16 channels.

To provide a comprehensive comparison between protocols, we

considered three typical workloads under a multihop topology:

data collection, data dissemination, and a mix of data collection

and dissemination. The results presented are obtained from 100

simulation runs per workload type. In all runs, the base station is

selected as the closest node to the topology center. In each run, 50

flows are created with the following constraints:

• Data Collection (COL): Sources are selected randomly with the

base station as the destination.

• Data Dissemination (DIS): The base station is the source, and

destinations are randomly selected.

• Data Collection and Dissemination (MIX): Each flow is randomly

selected to use either COL or DIS.
Each flow is randomly assigned to one of three classes whose peri-

ods and deadlines maintain a 1:2:5 ratio. Accordingly, if Class 1 is
assigned a period of 100𝑚𝑠 , then Class 2 is assigned 200𝑚𝑠 , and

Class 3 500𝑚𝑠 . We call the period of Class 1 the base period. In
each run, the base period is decreased until a deadline is missed.

The following results are obtained for the smallest base period for

which all flows met their deadlines.

Flow throughput: Figures 7a and 7b plot the total throughput

of each protocol under the considered workload type for the two

topologies. We observed the same trend in both topologies: CLLF
and REACT have significantly lower throughput than Recorp, WARP,
and WARP*. REACT has a slightly lower median throughput than

CLLF because its gap-induced algorithm forces all instances of a

flow to have the same repeating pattern of transmissions. The clear

winners are Recorp, WARP, and WARP*, because they can share en-

tries across multiple flows, significantly improving the supported

throughput. However, Recorp’s performance varies significantly

across different workload types. WARP improves upon Recorp’s me-

dian throughput across all scenarios, with notable improvements for

the DIS andMIX scenarios. In the Indriya topology forMIX work-

loads, WARP supports a medium total throughput of 55.4 packets per

second compared to Recorp’s 37.5 packets per second, represent-
ing a 47.68% improvement in throughput over Recorp. A slightly

larger improvement of 52% is observed for the DIS workload in
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Figure 7: Simulation results

Protocol Median synthesis time Range synthesis time
CLLF 9.688 seconds 7.08 – 14.47 seconds

REACT 0.18 seconds 0.09 – 0.27 seconds

Recorp 33.67 seconds 23.88 – 63.59 seconds

WARP 0.687 seconds 0.35 – 1.25 seconds

WARP* 0.05 seconds 0.02 – 0.08 seconds

Table 2: Synthesis time

the same topology. WARP also provides approximately 2.6-times im-

provement over scheduling approaches. One factor contributing to

these improvements is that WARP uses programs that include both

pushes and pulls, whereas Recorp can only use pulls. Addition-
ally, our heuristic to use pulls for downstream flows and pulls for
upstream flows is effective in both collection, dissemination, and

mixed workloads. WARP* has worse performance than WARP due

to its table lookup mechanism. However, it remains competitive

relative to WARP across all workloads. While the specific numbers

differ between the two topologies, the conclusion remains the same:

WARP consistently improves the throughput by as much as 2.6 times

over scheduling approaches and as much as 50% over Recorp.
Synthesis Time: Table 2 shows the synthesis and scheduling

times to build a complete schedule/program for each approach ob-

tained for the MIX workload on Indriya topology. The simulations
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Figure 8: On-the-fly synthesis time

and synthesis is carried out on a 40-core Intel Xeon(R) CPU E5-

2660 running at 2.60GHz and equipped with 128 GB RAM. Recorp
uses a heavy-weight SMT-solver to build policies having a median

and maximum synthesis time of 33.67 𝑠 and 63.59 𝑠 , respectively.

CLLF has a median synthesis time of 9.688 seconds, while REACT
is the most efficient scheduler with a median synthesis time of 0.18

seconds. WARP’s synthesis is highly efficient: WARP can synthesize

complete programs in less time than CLLF can construct sched-

ules. WARP* reduces the synthesis time by more than a factor of 10

over WARP, making it the fastest across the considered protocols.

We will later show how long it takes WARP* to synthesize a single

fragment in a slot on TelosB and DWM1001 devices. Therefore,

WARP’s synthesis procedure not only provides significant perfor-

mance improvements, but it is also efficient.

5.2 Testbed Results
We evaluated WARP*, REACT, and CLLF on the three-hop, 16 node

topology deployed at the University of Iowa using TelosB and the

Decawave DWM1001. We did not evaluate Recorp on the testbed

due to its long synthesis time and centralized control plane, which

hinder its applicability to practical IIoT. DWM1001 radios use the

802.15.4a physical layer and support a maximum data rate of 6.8

Mbps, while TelosB uses 802.15.4 and supports the maximum data

rate of 250 kbps. In all experiments, each device is configured to

use its maximum data rate. TelosB and DWM1001 use packets of

38 bytes and 127 bytes, respectively. We used channels 15, 20, 25,

and 26 for TelosB devices and channels 1, 3, and 5 with a pulse rate

frequency of 16MHz on the DWM1001 devices. The WARP* imple-

mentations on TelosB runs on Contiki and the one on DWM1001

on FreeRTOS. The feasibility experiment is performed on both

platforms, while the rest use only the DWM1001 devices.

TelosB DWM1001
Lookup tables 527 bytes 527 bytes

Topology 240 bytes 325 bytes

generator + 500 bytes for 50 flows 4080 bytes for 240 flows

estimator (10 bytes per flow) (17 bytes per flow)

Table 3: Memory usage on TelosB and DWM1001
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Figure 9: Adaption to workload change

Feasibility:We first consider the question of whether WARP* can
synthesize and execute fragments on resource-constrained devices

within 10 ms. Towards this end, we constructed MIX workloads by

adding an increasing number of flows and running each workload

for 10 minutes on the device. The period of all flows is 5 𝑠 . We

measured the time to synthesize and execute a fragment as the
number of added flows increased (see Figure 8). The experiment is

stopped when we ran out of memory due to queuing many packets.

The memory usage of our implementation on the two devices at

their maximum number of supported flows is shown in Table 3.

To our surprise, the decade-old TelosB handled 50 flows while

the more powerful DWM1001 handled 240 flows. The synthesis

and execution time is approximately 1.51 𝑚𝑠 in the worst case,

suggesting it is possible to have slots smaller than 10𝑚𝑠 .

Protocol Min Max Mean Median Std. dev
CLLF 56 696 211.84 152 177.945

REACT 24 224 82.24 64 57.295

WARP* 16 16 16.0 16 0.0

Table 4: Update time (s)

Workload adaption: Next, we evaluate the agility of the control

plane in response to workload changes. We set up an experiment

with three flow classes having periods of 100, 200, or 400 with a ratio

of 1:2:4. We opted to use harmonic periods since REACT performs

the best in this case. The initial workload includes 30 flows, and

we added a variable number of flows. To disseminate updates, a

Protocol Min Max Mean Median Std. dev
CLLF 77% 77% 77% 77% 0%

REACT 80% 84% 83% 84% 1%

WARP* 87% 99% 95% 98% 5%

Table 5: Minimum PDR during update time

three-slot broadcast graph that has each intermediary node in the

routing tree transmit once is scheduled every 2 𝑠 .

The vertical bars in Figure 9a indicate the maximum number of

flows that are supported by each protocol until missing a deadline.

Consistent with the previous results, WARP* provided significantly

higher throughput than CLLF and REACT. WARP* supports 115

flows, whereas CLLF and REACT only 40 and 39 flows, respectively.

We measure the control overhead measured as the number of

bytes that must be disseminated as the number of added flows

increases (see Figure 9a). The plot shows a linear relationship be-

tween control overhead and the number of added flows, but its

slope differs significantly among protocols. CLLF must disseminate

all additional entries and, as a consequence, must disseminate 4832

bytes to add 40 new flows. REACT’s gap-induced scheduler forces

all instances of a flow to have the same repeating pattern of trans-

missions. As a result, REACT has to disseminate the changes of a

single instance and apply them across the schedule. To schedule

39 new flows, REACT requires 2214 bytes to update the schedule.

WARP* must disseminate even less information than REACT as it

only needs to disseminate a flow’s parameters. When adding 39

new flows, WARP must disseminate only 351 bytes, which reduces

the control overhead 6.3-times over REACT.
Next, we consider the run-time behavior of the protocols as

they adapt in response to workload changes. Figure 9b plots the

protocols’ reliability in increments of 8 seconds for the duration

of the experiment. Fifty-six seconds into the experiment, 10 new

flows are added to the workload of initially 30 flows. All protocols

experience a drop in the reliability of flows immediately after the

update (new flow packets are not being delivered), but recovered

after different time periods. CLLF requires 128 seconds to construct
a new schedule and disseminate it to all nodes. REACT significantly

improves upon CLLF, requiring only 80 seconds to perform the

update. WARP* required only 16 seconds to update its schedule, a

reduction of 5 times over REACT.
To understand whether these are statistically significant, we

ran the experiment 25 times and recorded the update times and

minimum PDR during the update time. These results are reported

in Tables 4 and 5, respectively. The minimum and maximum update

time of CLLF are 56 seconds and 696 seconds. Using REACT, the
minimum update time is 24 seconds and the maximum is found 224

seconds. Both minimum and maximum update time of WARP* is 16

seconds, indicating substantial reduction in update times. Next, we

consider the PDR during the update time. UsingCLLF, the minimum

and maximum values are 0.77. The minimum value using REACT
is 0.80 and the maximum is 0.84. WARP* has the minimum value of

0.87 and maximum value of 0.99. This indicates that WARP* does

not only provide shorter updates time but also is more reliable as

the workload is updated.
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Figure 10: Estimated𝑚 and max. used transmissions of a flow’s link

Reliability and Adaptability: WARP guarantees that the likeli-

hood of a flow’s packet reaching its destination exceeds a user-

specified target probability when links behave according to the

TLR model. No guarantees are provided when the links do not

follow the TLR model. We set up an experiment where WARP* for-
warded the data of 40 flows with periods and deadlines of 110 slots.

The transmission power of the nodes is reduced to lower the mean

link quality and increase its variability. We considered a sliding

window of 100 packets shifted to the right in increments of one

packet over the 1000-packet trace for a total of 901 windows. We fit

a Bernoulli𝑚 random variable for each window to estimate TLR’s

minimum PDR. The value of𝑚 is determined such that the Bernoulli

distribution with𝑚 as the chance of success provides a lower bound

on the observed likelihood of bursts of failures. Accordingly, WARP’s
real-time and reliability constraints should be met if𝑚 ≥ 𝑚 = 70%.

For each window, one of the following cases is possible:

• Case 𝑚 ≥ 70%, E2E Met: For 86.83% of the windows, the TLR

model’s assumptions held (i.e.,𝑚 ≥ 𝑚 = 70%). WARP guaranteed

that the end-to-end reliability of all flows exceeded the 99% target

in these windows.

• Case𝑚 ≥ 70%, E2E Miss: There are no cases when the assump-

tions of the TLR model held and the flows do not meet the target

99% reliability. These first two cases support our claim that WARP
can meet the real-time and reliability constraints.

• Case 𝑚 < 70%: When the actual link quality falls below the

minimum link quality of𝑚 = 70%, we provide no guarantees on

the flow’s reliability. In 13.17% of the windows, the TLR model’s

assumptions did not hold (since we reduced the transmission

power to observe such cases). However, for all these windows,

the end-to-end reliability of flows met their target reliability.

Finally, we evaluate how a node’s program adapts in response to

the patterns of packet losses observed during its execution. Figure

10 plots the maximum number of transmissions and estimated

minimum packet delivery rate𝑚 for a link of a representative flow.

The variations in𝑚 show that this link’s quality can vary between

86% – 100% over time. The variations in the maximum number

of transmissions used within a window show that the program

changed the number of transmissions dynamically to adapt to the

observed pattern of packet losses. In summary, we can conclude that

WARP can adapt to variations in link quality and provide real-time

and reliability guarantees when links follow the TLR model.

6 CONCLUSIONS
WARP is a new approach to building real-time and reliable wireless

networks using software synthesis techniques. WARP has three core

components: (1) A DSL to specify the data plane’s behavior us-

ing programs that are more expressive than traditional schedules.

Programs are stateful and can include conditional statements to con-

trol when a flow’s packets are transmitted. Simulation experiments

demonstrate that programs’ more expressive behavior produces

significant improvements in throughput across typical IIoT sce-

narios. (2) A software synthesis procedure can turn a high-level

specification of the workload and topology into efficient programs

that enable multiple flows to share entries in the schedule. The

synthesized programs use a subset of power of the DSL to ensure

that their execution can be analyzed efficiently. Our experiments

indicate that the synthesized programs adapt to variations in link

quality and satisfy their real-time and reliability constraints. WARP
runs on-the-fly synthesis on DWM1001 devices with hundreds of

flows. (3) WARP runs software synthesis on each node to reconstruct

the same program based on shared workload and topology informa-

tion. Consequently, WARP is agile in handlingworkload and topology
changes by disseminating only the updates to the workload and

topology information. Empirical results show that WARP can adapt

more rapidly to workload changes than REACT. We hope that this

work will motivate the community to consider using software syn-

thesis for wireless networking and expand upon the techniques

that we have developed.
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